This question paper contains 8 printed

Roll No.

S. No. of Question Paper : 6490

Unique Paper Code : $\mathbf{3 2 1 7 . 1 2 0 1}$

Name of the Paper

Name of the Course
B.Sc. (H) Chemistry

LC

: Organic Chemistry-

Semester II

Duration : $\mathbf{3}$ Hours
Maximum Marks: 75
(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer six questions in all.

Question No. 1 is compulsory.
I. Attempt any five :
(a) Giving reasons, arrange the following carbanions in increasing order of stability :

$$
\begin{array}{cc}
\mathrm{C}_{6} \mathrm{H}_{5} \stackrel{-}{\mathrm{C}} \mathrm{H}_{2} \\
\text { (I) } & \left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \overline{\mathrm{C}}, \\
\text { (II) } & \left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \dot{\mathrm{C}} \mathrm{H} \\
\text { (III) }
\end{array}
$$

(b) Explain the following :
(i) Benzylamine is more basic than aniline.
(ii) α-bromobutanoic acid is stronger acid than β-bromobutanoic acid.
(c) Define the terms enantiomers and diastereoisomers. Explain with suitable examples.
(d) Explain why 1, 3-pentadiene is more stable than 1, 4-pentadiene.
(e) Giving reasons, arrange the following in increasing order of reactivity towards ring bromination :

(f) How would you distinguish 1-butyne from 1-butene
(g) Draw all conformations of 1, 2-dimethylćyclohexane. Which conformer is most stable and why ?
(h) Why is nitration of toluene faster than nitration of nitrobenzene ? $5 \times 3=15$
2. (a) Carry out the following conversions (any three) :
(i) 2-Pentanone from 1-pentene
(ii) Chloroprene from acetylene
(iii) 2, 3-Dimethylbutane from propane
(iv) 1-Phenylethane from bromobenzene
(v) Propyne to tert.-butylalcohol.
(b) Write down the mechanism involved in bromination of aromatic hydrocarbons.
(c) Giving reasons, arrange the following in increasing order of boiling points :

Neopentane, n-hexane, 2-methylpentane, 2, 3dimethylbutane.
(a) Draw the Fischer projections for all possible stereeisomers of butane-2, 3-diol. What is the correlation among these stereoisomers ? Comment on the optical activity of these isomers.
(b) Explain why the chair conformation of cyclohexane is more stable than the boat conformation.
(c) Assigning priority order, explain how you will designate
E / Z to the following :
(i)

(ii)

4. (a) Discuss the stereochemistry of addition of bromine to cis-2-butene.
(b) Chlorine is more reactive but bromine is more selective
(c) Which of the fotlowing compound/s is/are aromatic ?

Give reasons (any two) :
(i)

(ii)

[16] annulene
(iii)

5. (a) Calculate the percentage of isomers formed on monochlorination of n-butane. Relative rates of hydrogens $3^{\circ}: 2^{\circ}: 1^{\circ}$ towards chlorination at room temperature are $5.0: 3.8: 1$. in halogenation of alkanes. Explain.
(b) What happens when isobutylene is heated with Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$? Explain giving the mechanism.
(c) Assigning priority order, explain how you will designate R / S configuration to the following :
(i)

(ii)

6. (a) Complete the following reactions :

$+\mathrm{CH}_{2}=\mathrm{CHCHO}$
A

(ii)
 C
(iii)

(iv)

(vi)

(b) An optically active compound "A" with molecular formula $\mathrm{C}_{6} \mathrm{H}_{10}$ decolorizes bromine solution and gives white precipitate with ammonical solution of silver nitrate.

Compound " A " on.ozonolysis gives two compounds " B " and resolvable "C". Identify A, B and C.
(c) Define resolution. How would you resolve a racemic mixture of lactic acid?
7. (a) Write short notes on (any three) :
(i) Friedel-Crafts' alkylation reaction
(ii) Ozonolysis of alkenes
(iii) Mechanism of allylic substitution
(iv) Hyperconjugation and its applications.
(b) Define specific rotation. A solution of compound (7.14 g in 100 mL) in chloroform was taken in a polarimeter tube $(5 \mathrm{~cm})$ and its optical rotation at $25^{\circ} \mathrm{C}$ was found to be -1.3°. Calculate its specific rotation. 9,3

Roll No.

S. No. of Question Paper : 6491

Unique Paper Code : $\mathbf{3 2 1 7 1 2 0 2}$

Name of the Paper , : Physical Chemistry-II

Name of the Course : B.Sc. (Hons.) Chemistry

Semester II

Duration: $\mathbf{3}$ Hours
Maximum Marks : 75
(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer six questions in all. Question No. 1 is compulsory.

Use of scientific calculators is allowed.

Logarithmic tables can be provided, if required.

1. Explain, giving reasons, any five of the following :
(a) An ideal gas does not heat or cool on expansion or compression. Explain.
(b) The limiting partial molar volume of MgSO_{4} in water is $-1.4 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$. Explain
(c) What are the shortcomings of Joule's experiment?
(d) While stating the enthalpy change of a chemical reaction, the temperature and pressure of both the reactants and products are considered identical. Explain
(e) Crystallization process is attended by a decrease in entropy of the system yet it occurs spontaneously. Comment.
$(f) \quad$ It is not necessary to specify the pressure in third law. Explain.
(g) Integral enthalpy of solution is positive for NaCl and negative for KCl . Explain.
(h) Why is the value of C_{p} always greater than C_{v} ? $\quad 5 \times 3$
2. (a) Two moles of an ideal monatomic gas $\left(\mathrm{C}_{\mathrm{v}, \mathrm{m}}=12.55\right.$ $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) expands irreversibly and adiabatically from an initial pressure of 1.013 MPa against a constant external pressure of 0.1013 MPa , until the temperature drops from the initial value of 325 K to a final value of 275 K . Determine the final volume of the gases system and the work involved in the expansion process.
(b) Derive the relation $C_{p}-C_{v}=\operatorname{TV} \frac{\alpha^{2}}{\beta}$.
(c) Show that the magnitude of work involved in a reversible adiabatic expansion of an ideal gas is less than that of the isothermal one, when the expansion is carried out between the same initial and final pressures $4,4,4$
3. (a) The Joule-Thompson coefficient of a gas can be positive, negative or zero. Comment.
(b) Show that the expression for expansion work for expansion of a van der Waals gas is given by :

$$
w=-n \mathrm{RT} \ln \frac{\mathrm{~V}_{2}-n b}{\mathrm{~V}_{1}-n b}-n^{2} a\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)
$$

(c) 20 g of N_{2} at 300 K is compressed reversibly and adiabatically from $20 \mathrm{dm}^{3}$ to $10 \mathrm{dm}^{3}$. Calculate the final temperature, $\mathrm{q}, \mathrm{w}, \Delta \mathrm{U}$ and $\Delta \mathrm{H}$.
4. (a) Show, with suitable example, that the standard enthalpy of formation of an element in its most stable state of aggregation is immaterial in calculation of enthalpy of a reaction.

$$
(5)
$$

(b) 91 kJ of heat was evolved when one mole of MgSO_{4} was dissolved in a specified amount of water. When the solution of the same composition was formed by dissolution of one mole of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in suitable quantity of water, 13 kJ of heat was absorbed. Determine the enthalpy of hydration for the reaction
$\mathrm{MgSO}_{4}(\mathrm{~s})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
(c) Derive the Kirchhoff equation for the enthalpy change of a reaction when :
(i) $\quad \mathrm{C}_{\mathrm{p}}$ independent of temperature
(ii) C_{p} depends on temperature.
5. (a) To predict the spontaneity of a process both $\Delta \mathrm{S}_{\text {sys }}$ and $\Delta \mathrm{S}_{\text {surr }}$ are considered but $\Delta \mathrm{G}$ alone is sufficient for the same. Explain.
(b) One mole of an ideal monatomic gas at 298 K , occupying a volume of $3 \mathrm{dm}^{3}$, is expanded adiabatically and reversibly to a pressure of 101.325 kPa . Calculate $\mathrm{q}, \mathrm{w}, \Delta \mathrm{U}, \Delta \mathrm{H}$, and $\Delta \mathrm{S}$.
(c) Show that $d \mathrm{~S}=\frac{\mathrm{C}_{v}}{\mathrm{~T}} d \mathrm{~T}+\frac{\alpha}{\beta} d \mathrm{~V}$, where α and β are the coefficient of thermal expansion and compressibility factor respectively.
6. (a) Show that for an ideal gas undergoing reversible isothermal expansion; $\Delta \mathrm{G}=\Delta \mathrm{A}$.
(b) Derive the following relations:

$$
\left\{\frac{\partial\left(\frac{\Delta \mathrm{G}}{\mathrm{~T}}\right)}{\partial\left(\frac{1}{\mathrm{~T}}\right)}\right\}_{p}=\Delta \mathrm{H}
$$

(c) Calculate $\Delta_{r} \mathrm{~S}$ for the process

1 mole $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}, 293 \mathrm{~K}, 101.325 \mathrm{kPa}) \xrightarrow{\longrightarrow}$
1 mole $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}, 523 \mathrm{~K}, 101.325 \mathrm{kPa})$
Given the following data :
$\mathrm{C}_{p, m}(\mathrm{l})=75.312 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; \mathrm{C}_{p, m}(\mathrm{~g})=35.982 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

$$
\Delta_{\text {vap }} \mathrm{H} \text { at } 373 \mathrm{~K}, 101.325 \mathrm{kPa}=40.668 \mathrm{~kJ} \mathrm{~mol}^{-\mathrm{t}} \quad 3,4,5
$$

7. (a) Derive the relation $\left(\frac{\partial \mu_{i}}{\partial p}\right)_{\mathrm{T}_{, n_{j, s}}}=-\mathrm{V}_{i, p m}$
(b) Show that the chemical potential of an ideal gas in a mixture of ideal gases is lesser than the chemical potential of the pure ideal gas maintained at the same temperature and total pressure.
(c) Calculate the $\Delta_{\text {mix }} \mathrm{G}, \Delta_{\text {mix }} \mathrm{S}$ and $\Delta_{\text {mix }} \mathrm{H}$ when 20 mol of gas A is mixed in a gases mixture formed by mixing 20 mol of gas A and 20 mol of gas B, at $298 . \mathrm{K}$ and 1 atm pressure. $3,4,5$
8. (a) For the following reaction, predict and explain the change in extent of reaction upon an increase in pressure : $1 / 2 \mathrm{I}_{2}(\mathrm{~g})+1 / 2 \mathrm{Br}_{2}^{\prime}(\mathrm{g}) \rightleftharpoons \mathrm{IBr}(\mathrm{g})$
(b) Show that for an endothermic reaction, an increase in extent of reaction increases the equilibrium extent of reaction at equilibrium.
(c) $\quad \mathrm{PCl}_{5}(\mathrm{~g})$ dissociates according to the reaction,

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

At 523 K , the equilibrium constant K_{p}^{o} for the reaction is 1.80. Determine the degree of dissociation of $\mathrm{PCl}_{5} .3,4,5$
9. (a) When 0.1 M aqueous solution of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is separated from $0.1 \mathrm{M} \mathrm{FeCl}_{3}$ solution by a semipermeable membrane, predict whether the blue color will appear in either of the compartments as a result of the reaction between $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ and FeCl_{3} due to osmosis. Give reasons in support of your answer.

