$\widehat{C(C)}$	
This question paper contains 8 printed pages] 9018	
Roll No.	
S. No. of Question Paper : 6490	-
Unique Paper Code : 32171201	-
Name of the Paper : Organic Chemistry-	
Name of the Course : B.Sc. (H) Chemistry	*
Semester : II	
Ouration: 3 Hours Maximum Marks: 75	
Write your Roll No. on the top immediately on receipt of this question paper.)	
Answer six questions in all.	
Question No. 1 is compulsory.	
Attempt any five:	

Giving reasons, arrange the following carbanions in (a) increasing order of stability:

$$C_6H_5CH_2$$
 , $(C_6H_5)_3C$, $(C_6H_5)_2CH$ (II)

- (b) Explain the following:
 - (i) Benzylamine is more basic than aniline.
 - (ii) α-bromobutanoic acid is stronger acid thanβ-bromobutanoic acid.
- (c) Define the terms enantiomers and diastereoisomers.

 Explain with suitable examples.
- (d) Explain why 1, 3-pentadiene is more stable than 1, 4-pentadiene.
- (e) Giving reasons, arrange the following in increasing order of reactivity towards ring bromination:

(f) How would you distinguish 1-butyne from 1-butene chemically?

- (g) Draw all conformations of 1, 2-dimethyléyclohexane.

 Which conformer is most stable and why?
- (h) Why is nitration of toluene faster than nitration of nitrobenzene? 5×3=15
- 2. (a) Carry out the following conversions (any three):
 - (i) 2-Pentanone from 1-pentene
 - (ii) Chloroprene from acetylene
 - (iii) 2, 3-Dimethylbutane from propane
 - (iv) 1-Phenylethane from bromobenzene
 - (v) Propyne to tert,-butylalcohol.
 - (b) Write down the mechanism involved in bromination of aromatic hydrocarbons.
 - (c) Giving reasons, arrange the following in increasing order of boiling points:

Neopentane, *n*-hexane, 2-methylpentane, 2, 3-dimethylbutane. 6,3,3

P.T.O.

5.

- Draw the Fischer projections for all possible stereoisomers of butane-2, 3-diol. What is the correlation among these stereoisomers? Comment on the optical activity of these isomers.
- Explain why the chair conformation of cyclohexane is more (b) stable than the boat conformation.
- * Assigning priority order, explain how you will designate E/Z to the following:

(ii)
$$C_6H_5$$
 CN CH_3 CH_3

- Discuss the stereochemistry of addition of bromine to 4. (a) cis-2-butene.
 - (b) Chlorine is more reactive but bromine is more selective in halogenation of alkanes. Explain.

(c) Which of the following compound/s is/are aromatic? Give reasons (any two):

Calculate the percentage of isomers formed on (a) monochlorination of n-butane. Relative rates of hydrogens 3°: 2°: 1° towards chlorination at room temperature are 5.0:3.8:1.

- (b) What happens when isobutylene is heated with Conc.
 H₂SO₄? Explain giving the mechanism.
- (c) Assigning priority order, explain how you will designate R/S configuration to the following:

(i)
$$H \longrightarrow CI$$
 CH_2OH

6. (a) Complete the following reactions:

(ii) +
$$C_6H_5COCI$$
 anhyd. AICl₃ B + C

(iii)
$$H_3C$$
 C CH_2Br CH_2Br CH_3 CH_3 CH_3

(iv)
$$\frac{\text{CH}_3\text{COO})_2\text{Hg/H}_2\text{O. r.t}}{\text{NaBH}_4}$$

(v)
$$CH_3C \longrightarrow CHCH_3 \longrightarrow O_3/CCI_4 \longrightarrow G + H$$

- (b) An optically active compound "A" with molecular formula C₆H₁₀ decolorizes bromine solution and gives white precipitate with ammonical solution of silver nitrate. Compound "A" on ozonolysis gives two compounds "B" and resolvable "C". Identify A. B and C.
- (c) Define resolution. How would you resolve a racemic mixture of lactic acid?

 6.3,3

- 7. (a) Write short notes on (any three):
 - (i) Friedel-Crafts' alkylation reaction
 - (ii) Ozonolysis of alkenes
 - (iii) Mechanism of allylic substitution
 - (iv) Hyperconjugation and its applications.
 - (b) Define specific rotation. A solution of compound (7.14 g in 100 mL) in chloroform was taken in a polarimeter tube
 (5 cm) and its optical rotation at 25°C was found to be
 -1.3°. Calculate its specific rotation.

This question paper contains 7 printed pages] Roll No. S. No. of Question Paper 6491 Unique Paper Code 32171202 Name of the Paper Physical Chemistry-II Name of the Course B.Sc. (Hons.) Chemistry Semester Duration: 3 Hours Maximum Marks: 75 (Write your Roll No. on the top immediately on receipt of this question paper.) Answer six questions in all. Question No. 1 is compulsory. Use of scientific calculators is allowed. Logarithmic tables can be provided, if required. Explain, giving reasons, any five of the following: 1.

- (a) An ideal gas does not heat or cool on expansion or compression. Explain.
- (b) The limiting partial molar volume of MgSO₄ in water is
 1.4 cm³mol⁻¹. Explain

- (c) What are the shortcomings of Joule's experiment?
- (d) While stating the enthalpy change of a chemical reaction, the temperature and pressure of both the reactants and products are considered identical. Explain
- (e) Crystallization process is attended by a decrease in entropy of the system yet it occurs spontaneously.Comment.
- (f) It is not necessary to specify the pressure in third law.

 Explain.
- (g) Integral enthalpy of solution is positive for NaCl and negative for KCl. Explain.
- (h) Why is the value of C_p always greater than C_v ? 5×3
- 2. (a) Two moles of an ideal monatomic gas (C_{v,m} =12.55 JK⁻¹mol⁻¹) expands irreversibly and adiabatically from an initial pressure of 1.013 MPa against a constant external pressure of 0.1013 MPa, until the temperature drops from the initial value of 325 K to a final value of 275 K. Determine the final volume of the gases system and the work involved in the expansion process.

- (b) Derive the relation $C_p C_v = TV \frac{\alpha^2}{\beta}$.
- (c) Show that the magnitude of work involved in a reversible adiabatic expansion of an ideal gas is less than that of the isothermal one, when the expansion is carried out between the same initial and final pressures 4, 4, 4
- (a) The Joule-Thompson coefficient of a gas can be positive, negative or zero. Comment.
 - (b) Show that the expression for expansion work for expansion of a van der Waals gas is given by:

$$w = -n \operatorname{RT} \ln \frac{V_2 - nb}{V_1 - nb} - n^2 a \left(\frac{1}{V_2} - \frac{1}{V_1} \right).$$

- (c) 20 g of N₂ at 300 K is compressed reversibly and adiabatically from 20 dm³ to 10 dm³. Calculate the final temperature, q, w, ΔU and ΔH.
 4,4,4
- 4. (a) Show, with suitable example, that the standard enthalpy of formation of an element in its most stable state of aggregation is immaterial in calculation of enthalpy of a reaction.

(b) 91 kJ of heat was evolved when one mole of MgSO₄was dissolved in a specified amount of water. When the solution of the same composition was formed by dissolution of one mole of MgSO₄.7H₂O in suitable quantity of water, 13 kJ of heat was absorbed. Determine the enthalpy of hydration for the reaction

 $MgSO_4$ (s) + $7H_2O$ (l) \rightarrow $MgSO_4.7H_3O$ (s)

- (c) Derive the Kirchhoff equation for the enthalpy change of a reaction when:
 - (i) C_p independent of temperature
 - (ii) C_p depends on temperature. 3,4,5
- 5. (a) To predict the spontaneity of a process both ΔS_{sys} and ΔS_{surr} are considered but ΔG alone is sufficient for the same. Explain.
 - (b) One mole of an ideal monatomic gas at 298 K, occupying a volume of 3 dm³, is expanded adiabatically and reversibly to a pressure of 101.325kPa. Calculate q, w, ΔU, ΔH, and ΔS.

- (c) Show that $dS = \frac{C_v}{T} dT + \frac{\alpha}{\beta} dV$, where α and β are the coefficient of thermal expansion and compressibility factor respectively. 3,4,5
- 6. (a) Show that for an ideal gas undergoing reversible isothermal expansion; $\Delta G = \Delta A$.
 - (b) Derive the following relations:

$$\left\{ \frac{\partial (\frac{\Delta \mathbf{G}}{\mathbf{T}})}{\partial (\frac{1}{\mathbf{T}})} \right\}_{p} = \Delta \mathbf{H}$$

(c) Calculate Δ , S for the process

1 mole H₂O (g, 523K, 101.325 kPa)

Given the following data:

$$C_{p,m}(1) = 75.312 \text{ JK}^{-1}\text{mol}^{-1}; C_{p,m}(g) = 35.982 \text{ JK}^{-1} \text{ mol}^{-1}$$

$$\Delta_{\text{vap}}$$
H at 373 K, 101.325 kPa = 40.668 kJ mol⁻¹ 3,4,5

- 7. (a) Derive the relation $\left(\frac{\partial \mu_i}{\partial p}\right)_{\mathbf{T}, n_{j,s}} = -\mathbf{V}_{i, p, m}$
 - (b) Show that the chemical potential of an ideal gas in a mixture of ideal gases is lesser than the chemical potential of the pure ideal gas maintained at the same temperature and total pressure.

(c) Calculate the Δ_{mix}G, Δ_{mix}S and Δ_{mix}H when 20 mol of gas A is mixed in a gases mixture formed by mixing 20 mol of gas A and 20 mol of gas B, at 298 K and 1 atm pressure.3,4,5

(6)

- 8. (a) For the following reaction, predict and explain the change in extent of reaction upon an increase in pressure:

 1/2 I₂(g) + 1/2 Br₂ (g)
 IBr (g)
 - (b) Show that for an endothermic reaction, an increase in extent of reaction increases the equilibrium extent of reaction at equilibrium.
 - (c) $PCI_5(g)$ dissociates according to the reaction, $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$

At 523 K, the equilibrium constant K_p^o for the reaction is 1.80. Determine the degree of dissociation of PCl₅. 3,4,5

9. (a) When 0.1 M aqueous solution of K₄[Fe(CN)₆] is separated from 0.1 M FeCl₃ solution by a semipermeable membrane, predict whether the blue color will appear in either of the compartments as a result of the reaction between K₄[Fe(CN)₆] and FeCl₃ due to osmosis. Give reasons in support of your answer.

(b) Calculate the depression in freezing point of CCl₄ upon dissolution of a non-volatile substance in it, if the relative vapor pressure lowering is recorded as 0.04. The molar mass and freezing point depression constant for CCl₄ is 342 gmol⁻¹ and 31.8 K kgmol⁻¹, respectively.

(7)

(c) Derive thermodynamically:

$$\Delta T_f = \frac{RT_0^2 M_1}{\Delta H_{fus}} \times m$$
3,4,5